MTH 512 Advanced Linear Algebra Spring 2015, 1-1

. ID

EXAM II, MTH 512, Spring 2015

Ayman Badawi

- **QUESTION 1.** (i) Let <,> be an inner product on a vector space V. Prove that $||v + u|| \le ||v|| + ||u||$ for every $u, v \in V$.
- (ii) Let A be an invertible $n \times n$ matrix. Prove that $deg(m_{A^{-1}}(x)) = deg(m_A(x))$ (i.e., show that the degree of the minimum polynomial of A^{-1} equals the degree of the minimal polynomial of A). [Hint: note that 0 is not an eigenvalue of A and hence such polynomials (minimum polynomials) have nonzero constant, assume that $m_{A^{-1}}(x) = x^k + \ldots + a_1 x + a_0 (a_0 \neq 0)$ and $k < deg(m_A(x))$, then reach a contradiction].
- (iii) Let A be a 5×5 matrix such that $m_A(x) = C_A(X) = (x+2)^3(x-2)^2$. Find the Jordan-form of the matrix $A + 4I_4$ (justify your answer).

 $\begin{array}{l} \text{(iv) Let } A = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}. \text{Find } C_A(x). \text{ Find } m_A(x). \text{ Find } dim(E_2) \text{ and } dim(E_3). \end{array}$ $\begin{array}{l} \text{(v) Let } A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & -9 & 0 \\ 0 & 1 & 6 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}. \text{ Find } m_A(x) \text{ and then find the Jordan-form of } A. \text{ For each eigenvalue } \alpha \text{ of } A \text{ find } dim(E_\alpha). \end{array}$

(vi) Let $f(x), g(x) \in C[0, 1]$. Prove that $\int_0^1 f(x)g(x) \, dx \leq \sqrt{\int_0^1 f(x)^2 \, dx \int_0^1 g(x)^2 \, dx}$

- (vii) Give me two matrices 4×4 , say A, B, such that $m_A(x) = m_B(x)$ and $C_A(x) = C_B(x)$, but A is not similar to B. Tell me clearly why A is not similar to B.
- (viii) Let <,> be the normal dot product on \mathbb{R}^4 . Let $F = span\{(1, 1, 2, 1), (-1, -1, -1, 4)\}$. Write F^{\perp} as a span of an orthogonal basis (recall F^{\perp} is the set of all elements in \mathbb{R}^4 such that each is orthogonal to each element of F).

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com