EXAM II, MTH 512, Spring 2015

Ayman Badawi

QUESTION 1. (i) Let $<,>$ be an inner product on a vector space V. Prove that $\|v+u\| \leq\|v\|+\|u\|$ for every $u, v \in V$.
(ii) Let A be an invertible $n \times n$ matrix. Prove that $\operatorname{deg}\left(m_{A^{-1}}(x)\right)=\operatorname{deg}\left(m_{A}(x)\right)$ (i.e., show that the degree of the minimum polynomial of A^{-1} equals the degree of the minimal polynomial of A). [Hint: note that 0 is not an eigenvalue of A and hence such polynomials (minimum polynomials) have nonzero constant, assume that $\left.m_{A^{-1}}(x)\right)=x^{k}+\ldots+a_{1} x+a_{0}\left(a_{0} \neq 0\right)$ and $k<\operatorname{deg}\left(m_{A}(x)\right)$, then reach a contradiction].
(iii) Let A be a 5×5 matrix such that $m_{A}(x)=C_{A}(X)=(x+2)^{3}(x-2)^{2}$. Find the Jordan-form of the matrix $A+4 I_{4}$ (justify your answer).
(iv) Let $A=\left[\begin{array}{llllll}2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right]$. Find $C_{A}(x)$. Find $m_{A}(x)$. Find $\operatorname{dim}\left(E_{2}\right)$ and $\operatorname{dim}\left(E_{3}\right)$.
(v) Let $A=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & -9 & 0 \\ 0 & 1 & 6 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$. Find $m_{A}(x)$ and then find the Jordan-form of A. For each eigenvalue α of A find $\operatorname{dim}\left(E_{\alpha}\right)$.
(vi) Let $f(x), g(x) \in C[0,1]$. Prove that $\int_{0}^{1} f(x) g(x) d x \leq \sqrt{\int_{0}^{1} f(x)^{2} d x \int_{0}^{1} g(x)^{2} d x}$
(vii) Give me two matrices 4×4, say A, B, such that $m_{A}(x)=m_{B}(x)$ and $C_{A}(x)=C_{B}(x)$, but A is not similar to B. Tell me clearly why A is not similar to B.
(viii) Let $<,>$ be the normal dot product on R^{4}. Let $F=\operatorname{span}\{(1,1,2,1),(-1,-1,-1,4)\}$. Write F^{\perp} as a span of an orthogonal basis (recall F^{\perp} is the set of all elements in R^{4} such that each is orthogonal to each element of F).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

